ENGR335

Computer Solution to Example 10.6

Calculate the exit velocity for a 100 meter long pipe.

$$
\begin{aligned}
\mathrm{H}:=20 \quad \mathrm{~g}:=9.8 \quad \mathrm{~d}:=0.5 \quad \mathrm{v}:=.0000010 \quad \mathrm{~L}:=100 \quad \text { (SI units) } \\
\mathrm{ks}:=.000046
\end{aligned}
$$

Extended Bernoulli Equation with f by Haaland Correlation
$s(x):=\frac{x^{2}}{2 \cdot g} \cdot\left[4 \cdot \frac{L}{d} \cdot\left[3.4735-1.5635 \cdot \ln \left[\left(2 \cdot \frac{\mathrm{ks}}{\mathrm{d}}\right)^{1.11}+63.635 \cdot \frac{v}{\mathrm{~d} \cdot \mathrm{x}}\right]\right]^{-2}+1\right]-\mathrm{H}$
$x:=3 \quad \mathrm{x}$ is the "guess" for the root solver
$\mathrm{V}:=\operatorname{root}(\mathrm{s}(\mathrm{x}), \mathrm{x}) \quad \mathrm{V}$ is the exit velocity in meters/second
$\mathrm{V}=10.6964$
$\mathrm{f}:=4 \cdot\left[3.4735-1.5635 \ln \left[\left(2 \cdot \frac{\mathrm{ks}}{\mathrm{d}}\right)^{1.11}+63.635 \frac{\mathrm{v}}{\mathrm{d} \cdot \mathrm{V}}\right]\right]^{-2}$
f is the friction factor
$\mathrm{f}=0.0121$
$\operatorname{Re}:=\mathrm{d} \cdot \frac{\mathrm{V}}{\mathrm{v}} \quad \operatorname{Re}=5.3482 \times 10^{6}$
Q is the volume flow rate in meters cubed per second

$$
\mathrm{Q}:=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~V} \quad \mathrm{Q}=2.1002
$$

Now a program is written to calculate the exit velocity over a range of pipe lengths (L varies from 50 meters to 1000 meters).

$$
\mathrm{s}(\mathrm{x}, \mathrm{~L} 1):=\frac{\mathrm{x}^{2}}{2 \cdot \mathrm{~g}} \cdot\left[4 \cdot \frac{\mathrm{~L} 1}{\mathrm{~d}} \cdot\left[3.4735-1.5635 \cdot \ln \left[\left(2 \cdot \frac{\mathrm{ks}}{\mathrm{~d}}\right)^{1.11}+63.635 \cdot \frac{\mathrm{v}}{\mathrm{~d} \cdot \mathrm{x}}\right]\right]^{-2}+1\right]-\mathrm{H}
$$

$$
\begin{aligned}
& \mathrm{V} 1(\mathrm{x}, \mathrm{~L} 1):=\operatorname{root}(\mathrm{s}(\mathrm{x}, \mathrm{~L} 1), \mathrm{x}) \quad \mathrm{V} 1 \text { is a function - where } \mathrm{x} \text { is the } \\
& \text { guess and } \mathrm{L} 1 \text { is the pipe length. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V} 2:=\left\lvert\, \begin{array}{l}
\text { for } \mathrm{k} \in 0 . .95 \\
\left\lvert\, \begin{array}{l}
\mathrm{L} 2 \leftarrow 50+\mathrm{k} \cdot 10 \\
\mathrm{~V} 2_{\mathrm{k}} \leftarrow \mathrm{~V} 1(1, \mathrm{~L} 2)
\end{array}\right. \\
\mathrm{V} 2
\end{array}\right. \\
& \text { A for loop is used to calculate velocity } \\
& \text { for } 96 \text { pipe lengths. The guess } \\
& \text { for each call of function V1 is } 1 \text {. } \\
& \mathrm{Q} 2:=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~V} 2 \\
& \text { i := } 0 . .95 \\
& \mathrm{L2}_{\mathrm{i}}:=0.5+\mathrm{i} \cdot 10
\end{aligned}
$$

